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1 Introduction

Recently Georgi [1, 2] has introduced a new way of studying conformal sectors that couple to

the standard model using two-point functions of operators with scaling dimension between

one and two. Formally the phase space corresponding to the spectral density of this two-

point function resembles the phase space for a fractional number of particles, hence the

name “unparticles”. In the context of electroweak symmetry breaking these ideas have

been applied in models where the Higgs couples to an approximately conformal sector and

can mix with an unparticle [3–5]. Here however we are interested in models where the

Higgs itself emerges from an approximately conformal sector, or in other words the Higgs

itself is an unparticle (see ref. [6] for work on related ideas).

A model with an unparticle Higgs (aka Unhiggs) requires that we be able to gauge the

kinetic term of an unparticle effective action, but this can be done in a fairly straightforward

way [7]. We also know that new excitations that couple to weak interactions cannot be

arbitrarily light, since we would have seen such states in low-energy experiments. So the

conformal symmetry of the Higgs sector must be broken not too far below the weak scale.

Fortunately there is a simple way to account for such an threshold as well [4, 7, 8]. In

the limit where the scaling dimension of the unparticle approaches its canonical value, the

threshold becomes an ordinary mass. This threshold, by itself, is not enough to account

for a vacuum expectation value (VEV) for the Unhiggs. However, coupling an Unhiggs to

the standard model (SM) fields will force additional conformal symmetry breaking effects

at loop level and induce a potential for the Unhiggs. Experience with the SM and its

extensions suggests that top quark loops would tend to produce the largest effects (due to

the large top Yukawa coupling) and that top loops also tend to destabilize the symmetric
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vacuum with a vanishing VEV. For this paper we will simply assume that a suitable effective

potential can be arranged and then explore the consequences of the resulting VEV for the

electroweak gauge bosons.

Effective actions for unparticles are somewhat unfamiliar since they must be non-local

in position space, but this is precisely in accord with the requirements of the anti-de Sitter/

conformal field theory (AdS/CFT) correspondence [8]. It has even been checked that for

fermions such non-local actions reproduce the required scaling dimension independence of

anomaly factors [9]. These cross checks give us some confidence that unparticle actions

provide a consistent effective field theory for sufficiently small scaling dimensions.

The ideas we are exploring in this paper are closely related to conformal technicolor

models [10] where the operator that breaks electroweak symmetry has a dimension larger

than one and the square of this operator (the analogue of the Higgs mass term) is assumed

to be larger than four. Here we will only consider weakly coupled effective actions which

restricts us to having an Unhiggs mass operator dimension that is roughly twice as big

as the Unhiggs scaling dimension. The Unhiggs model is even more closely related to

gaugephobic Higgs models [11] where a five dimensional AdS description is set up with a

bulk Higgs that corresponds to a state with an arbitrary scaling dimension. Taking the limit

where the Higgs scaling dimension goes to infinity just gives a Randall-Sundrum model. In

the gaugephobic Higgs analysis only scaling dimensions larger than two were considered,

since this ensures that the hierarchy problem is solved. Here we will be content with only

addressing the little hierarchy problem (that is, why the weak scale is small compared to

10 TeV), and so we can consider scaling dimensions less than two. This is the regime where

the unparticle description is useful. We expect that a five dimensional description would

yield equivalent results, but the unparticle analysis is much easier to perform. We expect

that this will be even more of an advantage when one tries to calculate loops containing

Unhiggs propagators.

The outline of the paper is as follows. We will review the inclusion of gauge interactions

for an Unhiggs in the next section. Then we will examine WW scattering and see how it

is unitarized in such a model. We will then consider the phenomenological implications for

LEP bounds on the Higgs mass, where we will find that an Unhiggs can be much lighter

than an SM Higgs. Next we will address the problem of the top Yukawa coupling possibly

becoming non-perturbative below the cutoff scale. We will then comment on the little

hierarchy problem and how an Unhiggs can reduce the sensitivity of the weak scale to the

cutoff. We will also comment on the effects of additional loop induced kinetic terms and

finally present our conclusions.

2 Gauge interactions of the Unhiggs

Consider the momentum space effective action for an unparticle field H with scaling di-

mension d and an infrared cutoff1 scale µ:

S0 = −
∫

d4p

(2π)4
H† (−p2 + µ2

)2−d
H . (2.1)

1For a discussion of the infrared cutoff, or threshold, see [8].
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The field H thus has an unparticle propagator with a threshold at µ:

∆H(p) =
−i

(−p2 + µ2 − iǫ)2−d
, (2.2)

which approaches the usual particle propagator as d → 1. If we now include a gauge cou-

pling2 of this field to the standard model electroweak gauge group and a Yukawa coupling

to the top quark with a cutoff scale Λ we have

S =

∫

d4x − H† (D2 + µ2
)2−d

H − λt tR
H†

Λd−1

(

t

b

)

L

+ h.c. , (2.3)

where the Unhiggs field transforms under the electroweak gauge group SU(2)L ×U(1)Y as

a 21/2 and D is a gauge covariant derivative [7]. The Λ dependence in the Yukawa coupling

means that H is scaled so that its engineering dimension matches its scaling dimension.

Loop corrections involving these standard model couplings will break the conformal sym-

metry and give additional terms:

Sloop =

∫

d4x
C

Λ2d−2
DµH†DµH − λ

(

H†H

Λ2d−2
− V 2

2

)2

. (2.4)

The renormalized action, S + Sloop, includes two types of masses and two types of kinetic

terms. The loop induced potential term allows for a nontrivial VEV, while the loop induced

kinetic term does not lead to any qualitatively new behavior, so we save our comments on

this term for section 7. For d → 1 this model just reduces to the SM Higgs sector.

As in the SM the instability in the potential terms forces a non-zero vacuum expectation

value (VEV) for the Unhiggs:

〈H〉 =

(

0√
λV 2Λ2d−2−µ4−2dΛ4d−4

√
2λ

)

≡
(

0
vd

√
2

)

. (2.5)

Decomposing the Unhiggs into physical and Goldstone modes we can write

H =
1√
2
eiT aπa/vd

(

0

vd + h

)

(2.6)

= 〈H〉 +
1√
2

(

0

h

)

+ Π + . . . (2.7)

where

Π =

(

π+

iπ3
√

2

)

. (2.8)

To understand the gauge interactions it may be simpler to first write the pure derivative

terms as a non-local theory in position space

S =

∫

d4x d4y H†(y)F (x − y)H(x) , (2.9)

2For a discussion of the spin-1 resonances in the conformal sector with gauge boson quantum numbers,

see [8].
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qα, T a

p p′

Figure 1. The one gauge boson two Unhiggs Feynman diagram (eq. (2.11)).

and then ensure gauge invariance by using Mandelstam’s method [12] of introducing a

path-ordered exponential of the gauge field, i.e. a Wilson line,

W (x, y) = P exp

[

−igτa

∫ y

x
Aa

µdwµ

]

, (2.10)

between the two unparticle fields evaluated at x and y as in [12]. Applying this method

to the electroweak interactions of the Unhiggs allows us to calculate the Feynman vertex

(figure 1) for a gauge boson (with gauge generator T a) coupled to two Unhiggs fields. The

result [7] using eq. (2.3) is

igΓaα(p, q) ≡ iδ3S

δAaα(q)δφ†(p + q)δφ(p)

= −igT a 2pα + qα

2p · q + q2

[

(

µ2 − (p + q)2
)2−d −

(

µ2 − p2
)2−d

]

. (2.11)

Note that this vertex satisfies the Ward-Takahashi identity [13] which relates it to the

propagator ∆(p):

iqαΓaα = ∆−1(p + q)T a − T a∆−1(p) . (2.12)

The path-ordered exponential includes arbitrarily high powers of the gauge field, so there

are vertices with arbitrary numbers of gauge bosons. The two gauge boson two Unhiggs

vertex (figure 2) is [7]

ig2Γabαβ(p, q1, q2) = ig2

{

(

T aT b + T bT a
)

gαβF(p, q1 + q2) (2.13)

+T aT b (2p + q2)
β(2p + 2q2 + q1)

α

q2
1 + 2(p + q2) · q1

[F(p, q1 + q2) −F(p, q2)]

+T bT a (2p + q1)
α(2p + 2q1 + q2)

β

q2
2 + 2(p + q1) · q2

[F(p, q1 + q2) −F(p, q1)]

}

,

where

F(p, q) = −
(

µ2 − (p + q)2
)2−d −

(

µ2 − p2
)2−d

q2 + 2p · q . (2.14)
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Figure 2. The two gauge boson two Unhiggs Feynman diagram (eq. (2.13)).

From eq. (2.13) we infer that the momentum space action includes a quadratic term

for gauge bosons

−g2Aa
αAb

β〈H†〉T aT b〈H〉 (2.15)
{

gαβ(d − 2)µ2−2d − qαqβ

q2

[

(d − 2)µ2−2d −
(

µ2 − q2
)2−d −

(

µ2
)2−d

q2

]}

.

From eq. (2.11) we can infer that the action also includes a gauge boson-Goldstone boson

mixing term:

Lmix = g
(

〈H†〉Aa
αT aΠ − Π†Aa

αT a〈H〉
) [

(

µ2 − q2
)2−d −

(

µ2
)2−d

]

qα/q2 . (2.16)

The last term in eq. (2.15) is not gauge invariant, but note that the contribution to the

vacuum polarization from mixing with the Goldstone bosons is given by

Πabαβ(q) = −g2〈H†〉T aT b〈H〉 qαqβ

q4

[

(

µ2 − q2
)2−d −

(

µ2
)2−d

]2
∆GB(q). (2.17)

With the Goldstone boson propagator

∆GB(q) = − i

(µ2 − q2 − iǫ)2−d − µ4−2d
, (2.18)

the mixing contribution (2.17) cancels the gauge non-invariant term.

To discuss propagators and to perform non-trivial calculations it is convenient to re-

move the mixing terms by including gauge fixing terms:

LGF =
−1

2ξq2µ2−2d

[

qαqβW a
αW a

β + 2gξµ2−2dqαW a
α

(

Π†T a〈H〉 − 〈H†〉T aΠ
)

(2.19)

− g2ξ2µ4−4d
(

Π†T a〈H〉 − 〈H†〉T aΠ
)2

+ qαqβBαBβ + g′ξµ2−2dqαBα

(

Π†〈H〉 − 〈H†〉Π
)

− 1

4
g′2ξ2µ4−4d

(

Π†〈H〉 − 〈H†〉Π
)2
]

K(q2) ,
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with

K(q2) = µ4−2d − (µ2 − q2)2−d . (2.20)

Collecting all the coefficients of the quadratic terms for the W± gauge bosons we have

SW+W− =

∫

d4q

(2π)4
W+

α (q)W−
β (q)Iαβ (2.21)

where

Iαβ =
(

−q2 + M2
W

)

gαβ (2.22)

+

[

q2 − M2
W −

(

µ2
)2−d −

(

µ2 − q2
)2−d

µ2−2d

(

1

ξ
− M2

W

(2 − d)q2

)

]

qαqβ

q2
.

and

M2
W =

g2(2 − d)µ2−2dv2d

4
. (2.23)

The propagators for the gauge bosons are then very different from in the SM:

∆W (q) =
−i

q2 − M2
W + iǫ

(2.24)



gαβ +
ξ
(

q2 − M2
W

)

µ2−2d −
(

µ4−2d −
(

µ2 − q2
)2−d

)(

1 − ξ M2
W

(2−d)q2

)

(

µ4−2d − (µ2 − q2)2−d
)(

q2 − ξM2
W

2−d

) qαqβ



 .

The propagators for the Goldstone bosons are then:

∆π±(q) = − i

(µ2 − q2 − iǫ)2−d − µ4−2d − ξ
M2

W

2−d

[

(µ2 − q2)2−d − (µ2)2−d
]

/q2
(2.25)

∆π3(q) = − i

(µ2 − q2 − iǫ)2−d − µ4−2d − ξ
M2

Z

2−d

[

(µ2 − q2)2−d − (µ2)2−d
]

/q2
, (2.26)

while for the physical Unhiggs mode we have

∆h(q) = − i

m4−2d − µ4−2d + (µ2 − q2 − iǫ)2−d
(2.27)

where

m4−2d =
2λv2d

Λ4d−4
. (2.28)

From (2.27), the location of the Unhiggs resonance is given by

M2
Unh = µ2 − (µ4−2d − m4−2d)

1

2−d . (2.29)

Note that the physical Unhiggs has a width if m > µ and it may also have a tachyonic mass

for m > 2µ, depending on the value of d. To avoid these complications, we will assume

µ > m in the rest of this paper.
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W+ W−

W−

(a)

Z, γ

W−W+

W+ W−

(b)

W+

W− W+

W−

(c)

Figure 3. WW scattering diagrams containing no Unhiggs vertices or propagators.

3 WW scattering and Unitarity

The effects of unparticles on unitarity constraints have been studied in the case of WW

scattering [14] and in the case of Higgs-Higgs scattering [15]. In both of these cases, the

Higgs boson was assumed to be an ordinary particle, and the unparticle belonged to a non-

SM sector. The case of the Unhiggs is very different because an unparticle is replacing the

SM Higgs. Thus it is important to determine whether the Unhiggs can perform the same

role as the SM Higgs. One of the most important functions of the Higgs in the Standard

Model is that it unitarizes longitudinal WW scattering as the incoming energy becomes

large. As we will show, although the Unhiggs case is more complicated and necessitates

the use of a non-SM vertex, the Unhiggs is also sufficient to unitarize WW scattering at

high energies.

To calculate the WW scattering diagrams, it will be easiest to use the Landau gauge,

ξ = 0, where

∆W (q) =
−i

q2 − M2
W + iǫ

(

gαβ − qαqβ

q2

)

, (3.1)

∆π±(q) = ∆π3(q) = − i

(µ2 − q2 − iǫ)2−d − µ4−2d
. (3.2)

Since in this gauge the gauge boson propagators are the same as in the SM Landau gauge,

it is easy to see that the WW scattering diagrams given in figure 3, which contain no

Unhiggs propagators or vertices, are the same in the Unhiggs model as in the SM. In

the high energy limit, s, t ≫ M2
W , M2

Z , the contributions of these diagrams to the WW

scattering amplitude are [16]

MGauge,SM =
1

4

ig2

M2
W

(s + t) . (3.3)

The WW scattering diagrams in figure 4 are analogues of similar SM diagrams, but now

contain the two gauge boson one Unhiggs vertex and an Unhiggs propagator. From (2.13)

– 7 –
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Figure 4. WW scattering diagrams containing two gauge boson one Unhiggs vertices.

we see that the two gauge boson one Unhiggs vertex is given by:

g2Γabαβ
1 (q1, q2) = g2

{

(

T aT b + T bT a
)

〈H〉gαβF(0, q1 + q2) (3.4)

+T aT b〈H〉q
β
2 (2q2 + q1)

α

q2
1 + 2q2 · q1

[F(0, q1 + q2) −F(0, q2)]

+T bT a〈H〉q
α
1 (2q1 + q2)

β

q2
2 + 2q1 · q2

[F(0, q1 + q2) −F(0, q1)]

}

+g2

{

〈H†〉
(

T aT b + T bT a
)

gαβF(−q1 − q2, q1 + q2)

−〈H†〉T aT b qα
1 (2q1 + q2)

β

q2
1

[F(−q1−q2, q1+q2)−F(−q1−q2, q2)]

−〈H†〉T bT a qβ
2 (2q2 + q1)

α

q2
2

[F(−q1−q2, q1+q2)−F(−q1−q2, q1)]

}

,

where q1 and q2 are the incoming momenta of the gauge bosons. Since the polarization

vectors satisfy ǫ(qi) · qi = 0 and using F(0, q1 + q2) = F(−q1 − q2, q1 + q2) we have

g2ǫα(q1)ǫβ(q2)Γ
abαβ
1 (q1, q2) = g2

(

T aT b + T bT a
)

〈H〉 ǫ(q1) · ǫ(q2)F(0, q1 + q2) (3.5)

+g2〈H†〉
(

T aT b + T bT a
)

ǫ(q1) · ǫ(q2)F(0, q1 + q2) .

Therefore, in terms of W+, W− and the physical Unhiggs, we have

ig2ǫα(q1)ǫβ(q2)Γ
+−αβ
1 (q1, q2) = i

g2vd

2
ǫ(q1) · ǫ(q2)F(0, q1 + q2) . (3.6)

So for the s-channel Unhiggs exchange contribution (figure 4b) to WW scattering we find

Mh(s) = −g2 M2
W

(2 − d)µ2−2d

(

ǫ(q1) · ǫ(q2)

(

µ2 − s
)2−d −

(

µ2
)2−d

s

)

∆h(s) (3.7)

·
(

ǫ(q3) · ǫ(q4)

(

µ2 − s
)2−d −

(

µ2
)2−d

s

)

= −g2 M2
W

(2 − d)µ2−2d

((

1 − s

2M2
W

)

(

µ2 − s
)2−d −

(

µ2
)2−d

s

)2

∆h(s) . (3.8)
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Figure 5. The four gauge boson two Unhiggs contribution to WW scattering.

When s ≫ M2
W , µ2,m2 we have

Mh(s) = i
g2

4M2
W (2 − d)µ2−2d

(−s)2−d . (3.9)

Similarly, the t-channel Unhiggs exchange contribution (figure 4a) to WW scattering will

be, for t ≫ M2
W , µ2,m2

Mh(t) = i
g2

4M2
W (2 − d)µ2−2d

(−t)2−d . (3.10)

Combining the three amplitudes in (3.3), (3.9) and (3.10), we see that in the d → 1 limit,

the terms which grow with energy disappear, and WW scattering is unitarized. However,

in the case of interest, d 6= 1, the dangerous high energy terms do not cancel. So, unlike in

the case of the SM, the Unhiggs exchange diagrams in figure 4 are insufficient to unitarize

WW scattering.

As noted earlier, however, the Unhiggs action allows for vertices with arbitrary numbers

of gauge bosons. Therefore, there is another Unhiggs contribution to WW scattering from

the four gauge boson two Unhiggs vertex, given by

ig4Γabcdµναβ(p, q1, q2, q3, q4) ≡ iδ6S

δAaµ(q1)δAbν(q2)δAcα(q3)δAdβ(q4)δφ†(p′)δφ(p)
(3.11)

with

p′ = p + q1 + q2 + q3 + q4 . (3.12)

The four gauge boson two Unhiggs vertex which contributes to WW scattering is shown

in figure 5. The crosses on the Unhiggs lines denote that we have taken p = p′ = 0 and set

the Unhiggs to its VEV. Using the methods outlined in section 2, we derive an expression

for the four gauge boson two Unhiggs vertex which we can then apply to WW scattering.

The piece of the four gauge boson two Unhiggs vertex with no uncontracted momenta is

– 9 –
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given by

ig4Γabcdµναβ(p, q1, q2, q3, q4) ∋ −ig4〈H†〉
{

RcdRabgµνgαβG(p′, q1, q2, p) (3.13)

+RbdRacgµαgνβG(p′, q1, q3, p) + RacRbdgνβgαµG(p′, q2, q4, p)

+RadRbcgναgµβG(p′, q2, q3, p) + RabRcdgµνgαβG(p′, q3, q4, p)

+RbcRadgµβgναG(p′, q1, q4, p)
}

〈H〉

where

Rab ≡ (T aT b + T bT a) (3.14)

and

G(p′, qi, qj, p) ≡
{

(

µ2 − p′2
)2−d

(p′2 − (p + qi + qj)2) (p′2 − p2)
(3.15)

+

(

µ2 − (p + qi + qj)
2
)2−d

((p + qi + qj)2 − p2) ((p + qi + qj)2 − p′2)

}

.

Taking the limit p → 0, p′ → 0, we have

G(0, qi, qj, 0) =
(2 − d)(µ2−2d)

(qi + qj)2
+

(

µ2 − (qi + qj)
2
)2−d

(qi + qj)4
− µ4−2d

(qi + qj)4
. (3.16)

It turns out that to evaluate the WW scattering amplitude arising from the four

gauge boson two Unhiggs vertex we only need to consider the piece of the vertex with

no uncontracted momenta, as given in (3.13). We can see this by looking at the Lorentz

structure of the other terms in the vertex. The terms in the vertex with no gµν factors

have a Lorentz structure given by

(2p + q1)
µ(2p + 2q1 + q2)

ν(2p + 2q2 + q3)
α(2p + 2q2 + 2q3 + q4)

β + permutations.(3.17)

Upon setting p = p′ = 0, and contracting with ǫ(q1)µǫ(q2)νǫ(q3)αǫ(q4)β, we find that the

contribution to the amplitude is zero from this term, again using the fact that ǫ(qi) ·qi = 0.

There are also terms in the vertex which contain one factor of gµν . These terms have a

Lorentz structure given by

(2p + q1)
µ(2p + 2q1 + q2)

νgαβ + gνα(2p + q1)
µ(2p + 2q1 + 2q2 + 2q3 + q4)

β (3.18)

+ gµν(2p + 2q1 + 2q2 + q3)
α(2p + 2q1 + 2q2 + 2q3 + q4)

β + permutations.

Upon taking p → 0 and contracting with ǫ(q1)µǫ(q2)νǫ(q3)αǫ(q4)β , the first two terms

in (3.19) clearly go to zero. The third term in (3.19) also goes to zero upon contracting

with the polarization vectors because 2p + 2q1 + 2q2 + 2q3 + q4 = 2p′ − q4 → −q4 when

taking p′ → 0.

So the only contribution from the four gauge boson vertex to the WW scattering

amplitude comes from (3.13) and is given by

M2h(s) =
−ig4v2d

4

(

(2 − d)(µ2−2d)

s
+

(µ2 − s)2−d

s2
− µ4−2d

s2

)

[ǫ(q1) · ǫ(q2)]
2 (3.19)
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and

M2h(t) =
−ig4v2d

4

(

(2 − d)(µ2−2d)

t
+

(µ2 − t)2−d

t2
− µ4−2d

t2

)

[ǫ(q1) · ǫ(q3)]
2 . (3.20)

Taking s ≫ M2
W , µ2,m2 and t ≫ M2

W , µ2,m2, we have

M2h(s) =
−ig4v2d

16M4
W

[

(2 − d)(µ2−2d)s + (−s)2−d
]

(3.21)

= −i
g2

4M2
W

[

s +
(−s)2−d

(2 − d)(µ2−2d)

]

and

M2h(t) =
−ig4v2d

16M4
W

[

(2 − d)(µ2−2d)t + (−t)2−d
]

(3.22)

= −i
g2

4M2
W

[

t +
(−t)2−d

(2 − d)(µ2−2d)

]

.

The total WW scattering amplitude is given by

M = MGauge,SM + Mh + M2h . (3.23)

Combining eqs. (3.3), (3.9), (3.10), (3.21) and (3.22), we get

M =
1

4

ig2

M2
W

(s + t) + i
g2

4M2
W (2 − d)µ2−2d

(−s)2−d + i
g2

4M2
W (2 − d)µ2−2d

(−t)2−d (3.24)

−i
g2

4M2
W

[

s +
(−s)2−d

(2 − d)µ2−2d

]

− i
g2

4M2
W

[

t +
(−t)2−d

(2 − d)µ2−2d

]

+ O(s0) + O(t0) .

All of the terms that scale with positive powers of energy cancel in the full amplitude, and

therefore the Unhiggs does unitarize WW scattering.

However, partial wave unitarity can still be violated for certain values of the parameters

µ, m, and d. Therefore, we now examine the finite terms for s, t, µ2,m2 ≫ M2
W ,M2

Z .

Following [17], we note that there is a bound on the coefficient of the first partial wave

such that

|a0| ≤ 1 (3.25)

where al is defined by the equation

M(s, t) = 16π
∑

l=0

(2l + 1)al(s)Pl(cos θ) (3.26)

and Pl(cos θ) is a Legendre polynomial. Projecting out the zeroth partial wave and using

t = 2M2
W − s

2(1 − cos θ) ≈ − s
2(1 − cos θ), we have

a0(s) =
1

16πs

∫ 0

−s
M(s, t)dt . (3.27)

– 11 –



J
H
E
P
1
1
(
2
0
0
9
)
1
0
1

100

500

1000

1500 2000 5000

1.0 1.2 1.4 1.6 1.8

100

200

300

400

500

600

700

800

d

Μ

Figure 6. Contour plots of the bound on m in the d-µ plane. The darkest regions have the lowest

upper bound on m, Contour lines are shown for 100, 500, 1000, 1500, 2000, and 5000GeV.

In the limit s, t, µ2,m2 ≫ M2
W ,M2

Z , the full scattering amplitude is given by

M(s, t) = i
g2m4−2d

4M2
W (2 − d)µ2−2d

{

µ4−2d − (µ2 − s)2−d

m4−2d − µ4−2d + (µ2 − s)2−d

+
µ4−2d − (µ2 − t)2−d

m4−2d − µ4−2d + (µ2 − t)2−d

}

. (3.28)

Inserting M(s, t) into (3.27) and performing the integration, we find

a0(s) = i
GF m4−2d

8π
√

2(2 − d)µ2−2d

{

µ4−2d − (µ2 − s)2−d

m4−2d − µ4−2d + (µ2 − s)2−d
(3.29)

−1 +
1

s

(

µ4−2d

m4−2d − µ4−2d
+ 1

)

[

(µ2 + s)Qd(µ
2 + s) − µ2Qd(µ

2)
]

}

where GF = 1.166 × 10−5 GeV−2 is the Fermi constant and Qd(z) is defined in terms of

the hypergeometric function as

Qd(z) ≡ 2F1

(

1

2 − d
, 1; 1 +

1

2 − d
;− z2−d

m4−2d − µ4−2d

)

. (3.30)
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Figure 7. ξ2 as a function of d for µ = 100GeV, m = 75GeV and µ = 100GeV, m = 50GeV.

For large s this gives the bound

GF m4−2d < 4π
√

2(2 − d)µ2−2d . (3.31)

The resulting bound in the d-µ plane is shown in figure 6. The bound is only stringent for

large d ∼ 2 and large µ.

4 Lowering the LEP bounds on the Unhiggs

The LEP experiment put a lower bound on the Standard Model Higgs mass of

114.4 GeV [18]. In the case of a non-SM Higgs, such as the Unhiggs, there are two ef-

fects which can change the lower bound. One way for the bound to be invalid is to have

a branching ratio of H → bb that is different than in the SM, eg. ref. [19]. The other way

is to suppress the cross section for Higgs production. At LEP, the Higgs is produced by

the “Higgs-strahlung” process, e+e− → Z∗ → HZ. If the cross section for this process is

suppressed relative to the SM, then the lower bound will be reduced. In the case of the

Unhiggs, we expect such a suppression as d → 2, because in this limit the gauge covari-

ant derivative in eq. (2.3) disappears. The suppression is also clear from noting that the

Unhiggs-gauge boson couplings in eqs. (2.11), (2.13) and (3.4) go to zero in the d → 2 limit.

The Unhiggs becomes gaugephobic [11] when its scaling dimension is near 2 or larger [8].

We can quantify the suppression with the definition

ξ2 ≡ σUnh(e
+e− → HZ)

σSM(e+e− → HZ)
. (4.1)

We find that, upon ignoring terms proportional to the electron mass, there is a simple

relation between the amplitude squared in the Unhiggs model and the amplitude squared

in the Standard Model.

|MUnh(e+e− → HZ)|2 =
|P|2

(2 − d)µ2−2d
|MSM(e+e− → HZ)|2 (4.2)
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where

P =
(µ2)2−d −

(

µ2 − p2
h

)2−d

p2
h

, (4.3)

ph is the momentum 4-vector of the outgoing Unhiggs and

|MSM(e+e− → HZ)|2 ∝
[

1 +
E2

Z

M2
Z

+

(

1 − E2
Z

M2
Z

)

cos2 θ

]

. (4.4)

The cross section for 2 → 2 scattering is given in general by

σ =

∫ |M|2
2s

dΦ (4.5)

where dΦ is the phase space factor associated with the outgoing particles.

The phase space factor associated with the Unhiggs contains both a continuum above

the IR cutoff µ, and a pole at q2 = M2
Unh, where MUnh is given by eq. (2.29). If m < µ, then

the pole is necessarily below the IR cutoff and the phase space takes a relatively simple

form and is given by

dΦh(q2) =
Adθ(q0)θ(q2 − µ2)(q2 − µ2)2−d

(µ4−2d − m4−2d)2 + (q2 − µ2)4−2d − 2(µ4−2d − m4−2d)(q2 − µ2)2−d cos(dπ)

+θ(q0)
−πAd

sin(dπ)

(µ4−2d − m4−2d)
d−1

2−d

(2 − d)
δ(q2 − M2

Unh) , (4.6)

where Ad is a normalization factor as in [1]. The first line in eq. (4.6) contains the continuum

while the second line contains the pole. Note that for µ > m, the continuum part of the

phase space goes to zero as d → 1 because of the fact that Ad=1 = 0. Also, the part of the

phase space containing the pole has the following d → 1 limit:

lim
d→1

dΦh,pole(q
2) = 2πθ(q0)δ(q2 − m2) . (4.7)

Thus, for µ > m, the Unhiggs phase space in eq. (4.6) does indeed reduce to the Standard

Model Higgs result.

Using eqs. (4.2), (4.5) and (4.6), ξ2 can be calculated numerically as a function of d for

any values of the parameters µ and m. A plot of ξ2 vs. d for two pairs of µ and m is shown

in figure (7). As expected, ξ2 falls as d gets larger and is approximately zero for d → 2.

This shows that for moderate to high values of d, the suppression of the Unhiggs-Gauge

couplings allows for an Unhiggs lighter than 114 GeV to have evaded detection at LEP.

5 Running of the top Yukawa coupling

Consider the top Yukawa coupling given in eq. (2.3) which leads to an htt interaction term

LY =
1√
2

λt

Λd−1
htt . (5.1)
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After expanding around the Unhiggs VEV, the top Yukawa coupling is given at tree level by

λt

Λd−1

vd

√
2

= mt (5.2)

which, after writing vd in terms of MW leads to

λt =

√
2

2

mt

MW
g
√

2 − d

(

Λ

µ

)d−1

. (5.3)

In the Standard Model, λt =
√

2
2

mt

MW
g ≈ 1 at the electroweak scale. Therefore, with

a cutoff Λ = 10 TeV, λt may be significantly greater than one at the electroweak scale,

depending on the values of µ and d. In addition, we know that λt grows in the UV due to

quantum corrections associated with the top Yukawa coupling. Thus we need to calculate

the running of λt to make sure that it does not become non-perturbative before the cutoff

at around 10 TeV. We will start by defining the value of λt at the electroweak scale s0 ≈
100 GeV where MW and mt are measured, so that

λt(s0) =

√
2

2

mt

MW
g
√

2 − d

(

Λ

µ

)d−1

. (5.4)

To explain how we compute the running of λt, we start by noting that in the SM, the

top Yukawa beta function gets a positive contribution from terms proportional to λ3
t and

a negative contribution from terms proportional to the gauge couplings. Since the U(1)Y
and SU(2)L gauge couplings are small compared to the top Yukawa coupling and the QCD

coupling, we will ignore diagrams proportional to g and g′. The gluon contribution will

be the same in the Unhiggs model as in the SM, so it will not be necessary to perform

that calculation in this paper. However, we must calculate the contribution from diagrams

proportional to λ3
t , as these will in general be different than in the SM. Considering only

diagrams proportional to λ3
t , the correction to the top quark propagator as well as the

correction to the proper Yukawa vertex both contain Unhiggs propagators in the loop,

whereas the correction to the Unhiggs propagator is due to a top loop and thus does not

contain an unparticle propagator in the loop. This is important, due to the fact that

since the unparticle propagator has a reduced power of p2 compared to a regular particle

propagator, any loop which does not contain an unparticle propagator will generate a

subleading Unhiggs kinetic term3 compared to a loop with an unparticle propagator. For

this reason, the correction to the Unhiggs propagator is subleading and we have thus

only included the correction to the top quark propagator and the correction to the proper

Yukawa vertex.

Using the procedure described above and ignoring the gluon contribution for now, we

find that the top Yukawa coupling at an energy scale s is given by

λt(s) = λt(s0)

[

1 − 3 (λt(s0))
2

64π2

1

d − 1

(

1 −
(

s2
0

s2

)d−1
)]−1

. (5.5)

3These kinetic terms are further discussed in section 7.
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Figure 8. The white region is the region in µ-d parameter space where λt remains perturbative

up to 10TeV, while the dark region is the region where λt is non-perturbative at or below 10TeV.

The contour plot shown in figure 8 represents the value of the top Yukawa coupling at

the cutoff scale Λ = 10 TeV as a function of µ and d. We require λt(Λ) ≤ 2π so that the

coupling remains perturbative up to the cutoff. The white region of the plot is the region

for which λt(Λ) does indeed remain less than 2π. It is important to note that since we did

not include the gluon loops, which, as described above, causes λt to decrease in the UV,

the plot is a very conservative estimate of the allowed values of µ and d.

From figure 8, we see that these conservative estimates require that to have moderate

to high values of d, we must choose µ to be somewhat above the electroweak scale. For

instance, with a value of d = 1.7, we need to choose µ & 400 GeV.

6 Yukawa couplings and the UV cutoff

The top Yukawa coupling is also important in estimating the maximum value of the cutoff

allowed in the theory by using fine tuning arguments. From the usual top loop correction

to the quadratic Unhiggs term in the action we find

δm4−2d
h =

3|λt|2
8π2

Λ4−2d . (6.1)

Qualitatively, we want the correction to the Unhiggs mass term to be at most of the order

of the tree level term to avoid excessive fine-tuning. This means we want

δm4−2d
h ≈ 3|λt|2

8π2
Λ4−2d < µ4−2d . (6.2)

Thus, eq. (6.2) leads to a larger value of the maximum cutoff, Λmax, for larger values of d,

as in figure 9.

In this plot, we have chosen a fixed value of µ and λt consistent with the bounds

required by figure 8 at d = 1.7. We have also normalized so that the maximum cutoff in

the Standard Model (d = 1) is 1 TeV. The plot clearly shows that we can push the UV

scale past the usual SM value of ∼ 1TeV for values of d greater than 1. For example, the

cutoff can be near 10 TeV without much fine-tuning for d ∼ 1.7.
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Figure 9. Qualitative behavior of Λmax as a function of d for fixed µ and λt.

7 Loop induced kinetic term

As we mentioned in section 2, loop effects will also induce terms in the Lagrangian of

the form

Lkin = − C

Λ2d−2
H†D2H (7.1)

where C is a dimensionless coefficient. Qualitatively, our analysis above is not affected by

this term. However, we can estimate its quantitative effect by comparing it with the kinetic

term in the original Lagrangian (2.3). The ratio, R, of the momentum scales between the

two terms is:

R =
C

Λ2d−2 p2

p2(2−d)
= C

(

p2

Λ2

)d−1

. (7.2)

Since we are considering values for an Unhiggs threshold around ≈ 100 GeV, we take

p ≈ 100 GeV. Inserting our previous value of Λ = 10 TeV, we find

R = C(.0001)d−1 . (7.3)

We expect C < 1 since it is a loop suppressed coefficient. For values of d near one, R ≈ C

and the loop induced term will have a relatively small quantitative effect. However, for

moderate values of d, R becomes extremely small and the term in eq. (7.1) will have no

appreciable effect on the results of the previous sections. This loop induced term will affect

the region near d = 2 where a pure unparticle is highly gaugephobic [8] since it provides

an additional contribution to gauge couplings.

However, since the model should be valid up to at least a few TeV, it is important

to show that the loop induced kinetic term does not qualitatively change the longitudinal

WW scattering analysis of section 3, even for large p2. After expanding eq. (7.1) around

the VEV, the loop induced kinetic term contributes to the Lagrangian three terms relevant

for WW scattering.

L ∋ C

Λ2d−2

(

g2

4
W+W−v2d +

g2

2
W+W−hvd +

1

2
∂µh∂µh

)

. (7.4)
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This causes a modification to the W mass, which is now given by

M2
W =

g2(2 − d)µ2−2dv2d

4
+

C

Λ2d−2

g2v2d

4
. (7.5)

The Unhiggs propagator and the hW+W− vertex will also be modified by eq. (7.4). The

pure gauge contribution (figure 3) to the WW scattering amplitude will retain the same

form as in eq. (3.3), but with the modified W mass. Also, the four gauge boson two Unhiggs

contribution (figure 5) is still given by eq. (3.21), again with the modified W mass. The

contribution from the two gauge boson one Unhiggs vertex (figure 4) contains both the

modified hW+W− vertex as well as the modified Unhiggs propagator. The s-channel

contribution to the longitudinal WW scattering amplitude is now given by

M1h =
−ig4v2d

4

(

1 − s

2M2
W

)

(

C
Λ2d−2 + µ4−2d−(µ2−s)2−d

s

)2

µ4−2d − m4−2d − (µ2 − s)2−d + C
Λ2d−2 s

. (7.6)

Upon taking s ≫ MW , µ,m, we get

M1h =
−ig4v2d

16M4
W

[

C

Λ2d−2
s − (−s)2−d

]

. (7.7)

Combining the contributions from eqs. (3.3), (3.21) and (7.7) yields the following for the

s-channel contribution to the WW scattering amplitdue:

Ms−channel =
−ig4v2d

16M4
W

C

Λ2d−2
s +

ig2

4M2
W

[

1 − g2v2d

4M2
W

(2 − d)µ2−2d

]

s (7.8)

=
ig2

4M2
W

[

1 − g2v2d

4M2
W

(

C

Λ2d−2
+ (2 − d)µ2−2d

)]

s .

Using the modified formula for the W mass in eq. (7.5), we find

Ms−channel =
ig2

4M2
W

(

1 − g2v2d

4M2
W

4M2
W

g2v2d

)

s (7.9)

=
ig2

4M2
W

(1 − 1)s = 0 .

The analysis of the t-channel contribution is exactly analogous. Thus, we have shown that

for s, t → ∞, the loop induced kinetic term does not affect the unitarity of longitudinal

WW scattering. Of course, the loop induced kinetic term will affect the quantitative

analysis of the allowed values of the parameters in figure 6, but since we expect C to be

loop suppressed, the loop induced kinetic term should not drastically affect the results.

8 Conclusions

We have explored the possibility that the Higgs arises from an approximately conformal

sector and is described by an unparticle. We have found that such an Unhiggs can still

break electroweak symmetry and unitarize WW scattering, but that the lower bounds on
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the mass threshold from LEP are much weaker than for a SM Higgs. Raising the scaling

dimension of the Unhiggs mass term serves to weaken the little hierarchy problem since

the power dependence on the cutoff is reduced. This is as one would expect, since breaking

electroweak symmetry by an operator with dimension greater than two and thus a mass

term operator dimension greater than four (at least at weak coupling) provides a solution

to the full hierarchy problem. This is essentially what happens in Randall-Sundrum models

(and other technicolor-like models): the scaling dimension of the (analogue) of the Higgs

mass operator is very large and thus safe from any divergences. For an Unhiggs the mass

term operator dimension is between two and four, an thus the mass term divergence scales

as the cutoff to a power between two and zero. It would also be very interesting to explore

how Unhiggs loops affect precision electroweak measurements.
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